Features

- Single-voltage Operation
 - 5V Read
 - 5V Reprogramming
- Fast Read Access Time 45 ns
- Internal Program Control and Timer
- Sector Architecture
 - One 16K Bytes Boot Block with Programming Lockout
 - Two 8K Bytes Parameter Blocks
 - Two Main Memory Blocks (32K Bytes, 64K Bytes)
- Fast Erase Cycle Time 3 Seconds
- Byte-by-Byte Programming 30 µs/Byte Typical
- Hardware Data Protection
- DATA Polling for End of Program Detection
- Low Power Dissipation
 - 30 mA Active Current
 - 50 µA CMOS Standby Current
- Typical 10,000 Write Cycles
- Green (Pb/Halide-free) Packaging Option

1. Description

The AT49F001A(N)(T) is a 5-volt only in-system reprogrammable Flash memory. Its 1 megabit of memory is organized as 131,072 words by 8 bits. Manufactured with Atmel's advanced nonvolatile CMOS technology, the device offers access times to 45 ns with power dissipation of just 165 mW over the industrial temperature range.

When the device is deselected, the CMOS standby current is less than 50 μ A. For the AT49F001AN(T), pin 1 for the PLCC package and pin 9 for the TSOP package are no connect pins.

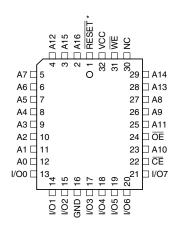
To allow for simple in-system reprogrammability, the AT49F001A(N)(T) does not require high input voltages for programming. Five-volt-only commands determine the read and programming operation of the device. Reading data out of the device is similar to reading from an EPROM; it has standard \overline{CE} , \overline{OE} , and \overline{WE} inputs to avoid bus contention. Reprogramming the AT49F001A(N)(T) is performed by erasing a block of data and then programming on a byte by byte basis. The byte programming time is a fast 30 µs. The end of a program cycle can be optionally detected by the DATA polling feature. Once the end of a byte program cycle has been detected, a new access for a read or program can begin. The typical number of program and erase cycles is in excess of 10,000 cycles.

The device is erased by executing the erase command sequence; the device internally controls the erase operations. There are two 8K byte parameter block sections, two main memory blocks, and one boot block.

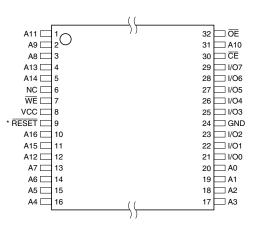
The device has the capability to protect the data in the boot block; this feature is enabled by a command sequence. The 16K-byte boot block section includes a reprogramming lock out feature to provide data integrity. The boot sector is designed to contain user secure code, and when the feature is enabled, the boot sector is protected from being reprogrammed.

1-megabit (128K x 8) 5-volt Only Flash Memory

AT49F001A AT49F001AN AT49F001AT AT49F001ANT

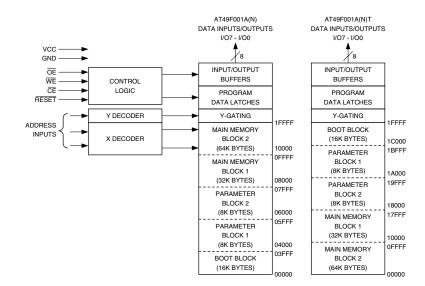


In the AT49F001A(N)(T), once the boot block programming lockout feature is enabled, the contents of the boot block are permanent and cannot be changed. In the AT49F001A(T), once the boot block programming lockout feature is enabled, the contents of the boot block cannot be changed with input voltage levels of 5.5 volts or less.


2. Pin Configurations

Pin Name	Function
A0 - A16	Addresses
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
RESET	RESET
I/O0 - I/O7	Data Inputs/Outputs
NC	No Connect

2.1 32-lead PLCC Top View



2.2 32-lead VSOP (8 x 14 mm) or 32-lead TSOP, Type 1 (8 x 20 mm)

² AT49F001A(N)(T)

3. Block Diagram

4. Device Operation

4.1 Read

The AT49F001A(N)(T) is accessed like an EPROM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever \overline{CE} or \overline{OE} is high. This dual-line control gives designers flexibility in preventing bus contention.

4.2 Command Sequences

When the device is first powered on it will be reset to the read or standby mode depending upon the state of the control line inputs. In order to perform other device functions, a series of command sequences are entered into the device. The command sequences are shown in the "Command Definition Table" on page 6. The command sequences are written by applying a low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high. The address is latched on the falling edge of \overline{CE} or \overline{WE} (except for the sixth cycle of the Sector Erase command), whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Standard microprocessor write timings are used. The address locations used in the command sequences are not affected by entering the command sequences.

4.3 Reset

A RESET input pin is provided to ease some system applications. When RESET is at a logic high level, the device is in its standard operating mode. A low level on the RESET input halts the present device operation and puts the outputs of the device in a high impedance state. If the RESET pin makes a high to low transition during a program or erase operation, the operation may not be successfully completed and the operation will have to be repeated after a high level is applied to the RESET pin. When a high level is reasserted on the RESET pin, the device returns to the read or standby mode, depending upon the state of the control inputs. By applying a 12V \pm 0.5V input signal to the RESET pin, the boot block array can be reprogrammed even if the boot block lockout feature has been enabled (see "Boot Block Programming Lockout" on page 4). The RESET feature is not available for the AT49F001AN(T).

4.4 Erasure

Before a byte can be reprogrammed, the main memory block or parameter block which contains the byte must be erased. The erased state of the memory bits is a logical "1". The entire device can be erased at one time by using a 6-byte software code. The software chip erase code consists of 6-byte load commands to specific address locations with a specific data pattern (please refer to the Chip Erase Cycle Waveforms).

After the software chip erase has been initiated, the device will internally time the erase operation so that no external clocks are required. The maximum time needed to erase the whole chip is t_{EC} . If the boot block lockout feature has been enabled, the data in the boot sector will not be erased.

4.4.1 Chip Erase

If the boot block lockout has been enabled, the Chip Erase function will erase Parameter Block 1, Parameter Block 2, Main Memory Block 1- 2 but not the boot block. If the Boot Block Lockout has not been enabled, the Chip Erase function will erase the entire chip. After the full chip erase the device will return back to read mode. Any command during chip erase will be ignored.

4.4.2 Sector Erase

As an alternative to a full chip erase, the device is organized into sectors that can be individually erased. There are two 8K-byte parameter block sections and two main memory blocks. The 8K-byte parameter block sections and the two main memory blocks can be independently erased and reprogrammed. The Sector Erase command is a six bus cycle operation. The sector address is latched on the rising \overline{WE} edge of the sixth cycle and the 30H data input command is also latched at the rising edge of \overline{WE} . The sector erase starts after the rising edge of \overline{WE} of the sixth cycle. The erase operation is internally controlled; it will automatically time to completion.

4.5 Byte Programming

Once the memory array is erased, the device is programmed (to a logical "0") on a byte-by-byte basis. Please note that a data "0" cannot be programmed back to a "1"; only erase operations can convert "0"s to "1"s. Programming is accomplished via the internal device command register and is a 4 bus cycle operation (please refer to the "Command Definition Table" on page 6). The device will automatically generate the required internal program pulses.

The program cycle has addresses latched on the falling edge of $\overline{\text{WE}}$ or $\overline{\text{CE}}$, whichever occurs last, and the data latched on the rising edge of $\overline{\text{WE}}$ or $\overline{\text{CE}}$, whichever occurs first. Programming is completed after the specified t_{BP} cycle time. The DATA polling feature may also be used to indicate the end of a program cycle.

4.6 Boot Block Programming Lockout

The device has one designated block that has a programming lockout feature. This feature prevents programming of data in the designated block once the feature has been enabled. The size of the block is 16K bytes. This block, referred to as the boot block, can contain secure code that is used to bring up the system. Enabling the lockout feature will allow the boot code to stay in the device while data in the rest of the device is updated. This feature does not have to be activated; the boot block's usage as a write protected region is optional to the user. The address range of the boot block is 00000 to 03FFF for the AT49F001A(N) while the address range of the boot block is 1C000 to 1FFFF for the AT49F001A(N)T.

Once the feature is enabled, the data in the boot block can no longer be erased or programmed with input voltage levels of 5.5V or less. Data in the main memory block can still be changed

through the regular programming method. To activate the lockout feature, a series of six program commands to specific addresses with specific data must be performed. Please refer to the "Command Definition Table" on page 6.

4.6.1 Boot Block Lockout Detection

A software method is available to determine if programming of the boot block section is locked out. When the device is in the software product identification mode (see Software Product Identification Entry and Exit sections) a read from address location 00002H will show if programming the boot block is locked out for the AT49F001A(N), and a read from address location 1C002H will show if programming the boot block is locked out for the AT49F001A(N). If the data on I/O0 is low, the boot block can be programmed; if the data on I/O0 is high, the program lockout feature has been activated and the block cannot be programmed. The software product identification exit code should be used to return to standard operation.

4.6.2 Boot Block Programming Lockout Override

The user can override the boot block programming lockout by taking the RESET pin to 12 volts. By doing this, protected boot block data can be altered through a chip erase, sector erase or word programming. When the RESET pin is brought back to TTL levels the boot block programming lockout feature is again active. This feature is not available on the AT49F001AN(T).

4.7 Product Identification

The product identification mode identifies the device and manufacturer as Atmel. It may be accessed by hardware or software operation. The hardware operation mode can be used by an external programmer to identify the correct programming algorithm for the Atmel product.

For details, see "Operating Modes" on page 7 (for hardware operation) or Software Product Identification. The manufacturer and device code is the same for both modes.

4.8 DATA Polling

The AT49F001A(N)(T) features \overline{DATA} polling to indicate the end of a program cycle. During a program cycle an attempted read of the last byte loaded will result in the complement of the loaded data on I/O7. Once the program cycle has been completed, true data is valid on all outputs and the next cycle may begin. \overline{DATA} polling may begin at any time during the program cycle.

4.9 Toggle Bit

In addition to DATA polling the AT49F001A(N)(T) provides another method for determining the end of a program or erase cycle. During a program or erase operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the program cycle has completed, I/O6 will stop toggling and valid data will be read. Examining the toggle bit may begin at any time during a program cycle.

4.10 Hardware Data Protection

Hardware features protect against inadvertent programs to the AT49F001A(N)(T) in the following ways: (a) V_{CC} sense: if V_{CC} is below 3.8V (typical), the program function is inhibited. (b) Program inhibit: holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits program cycles. (c) Noise filter: pulses of less than 15 ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a program cycle.

5. Command Definition Table

Command Sequence	Bus	1st I Cyc		2nd I Cyc		3rd Cyc		4th Cy		5th Cy		6th I Cyc	
	Cycles	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Read	1	Addr	D _{OUT}										
Chip Erase	6	555	AA	AAA ⁽²⁾	55	555	80	555	AA	AAA	55	555	10
Sector Erase	6	555	AA	AAA	55	555	80	555	AA	AAA	55	SA ⁽⁵⁾	30
Byte Program	4	555	AA	AAA	55	555	A0	Addr	D _{IN}				
Boot Block Lockout ⁽³⁾	6	555	AA	AAA	55	555	80	555	AA	AAA	55	555	40
Product ID Entry	3	555	AA	AAA	55	555	90						
Product ID Exit ⁽⁴⁾	3	555	AA	AAA	55	555	F0						
Product ID Exit ⁽⁴⁾	1	XXXX	F0										

Notes: 1. The DATA FORMAT in each bus cycle is as follows: I/O7 - I/O0 (Hex). The address format in each bus cycle is as follows: A11 - A0 (Hex); A11 - A16 (don't care).

2. Since A11 is don't care, AAA can be replaced with 2AA.

- 3. The 16K byte boot sector has the address range 00000H to 03FFFH for the AT49F001A(N) and 1C000H to 1FFFFH for the AT49F001A(N)T
- 4. Either one of the Product ID Exit commands can be used.
- 5. SA = sector addresses:
 - For the AT49F001A(N):
 - SA = 00000 to 03FFF for BOOT BLOCK
 - SA = 04000 to 05FFF for PARAMETER BLOCK 1
 - SA = 06000 to 07FFF for PARAMETER BLOCK 2
 - SA = 08000 to FFFF for MAIN MEMORY ARRAY BLOCK 1
 - SA = 10000 to 1FFFF for MAIN MEMORY ARRAY BLOCK 2

For the AT49F001A(N)T:

- SA = 1C000 to 1FFFF for BOOT BLOCK
- SA = 1A000 to 1BFFF for PARAMETER BLOCK 1
- SA = 18000 to 19FFF for PARAMETER BLOCK 2
- SA = 10000 to 17FFF for MAIN MEMORY ARRAY BLOCK 1
- SA = 00000 to 0FFFF for MAIN MEMORY ARRAY BLOCK 2

6. Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C	*NOTICE:	Stresses beyond those listed under "Absolute Maxi- mum Ratings" may cause permanent damage to the
Storage Temperature65°C to +150°C		device. This is a stress rating only and functional operation of the device at these or any other condi-
All Input Voltages		tions beyond those indicated in the operational sec-
(including NC Pins)		tions of this specification is not implied. Exposure to
with Respect to Ground0.6V to +6.25V		absolute maximum rating conditions for extended periods may affect device reliability.
All Output Voltages		
with Respect to Ground0.6V to V_{CC} + 0.6V		
Voltage on OE		
with Respect to Ground0.6V to +13.5V		

7. DC and AC Operating Range

		AT49F001A(N)(T)-45	AT49F001A(N)(T)-55
Operating Temperature (Case)	Ind.	-40°C - 85°C	-40°C - 85°C
V _{CC} Power Supply		5V ± 10%	5V ± 10%

8. Operating Modes

Mode	CE	OE	WE	RESET ⁽⁶⁾	Ai	I/O
Read	V _{IL}	V _{IL}	V _{IH}	V _{IH}	Ai	D _{OUT}
Program/Erase ⁽²⁾	V _{IL}	V _{IH}	V _{IL}	V _{IH}	Ai	D _{IN}
Standby/Write Inhibit	V _{IH}	X ⁽¹⁾	Х	V _{IH}	Х	High Z
Due que un la hihit	Х	Х	V _{IH}	V _{IH}		
Program Inhibit	Х	V _{IL}	Х	V _{IH}		
Output Disable	Х	V _{IH}	Х	V _{IH}		High Z
Reset	Х	Х	Х	V _{IL}	X	High Z
Product Identification						
l le selver se		N/	N		A1 - A16 = V_{IL} , A9 = V_{H} , ⁽³⁾ A0 = V_{IL}	Manufacturer Code ⁽⁴⁾
Hardware	V _{IL}	V _{IL}	V _{IH}		A1 - A16 = V_{IL} , A9 = $V_{H_{,}}^{(3)}$ A0 = V_{IH}	Device Code ⁽⁴⁾
Software ⁽⁵⁾					A0 = V _{IL} , A1 - A16 =V _{IL}	Manufacturer Code ⁽⁴⁾
Sollware					A0 = V _{IH} , A1 - A16 =V _{IL}	Device Code ⁽⁴⁾

Notes: 1. X can be V_{IL} or V_{IH.}

2. Refer to AC Programming Waveforms.

3. $V_{\rm H} = 12.0V \pm 0.5V$.

4. Manufacturer Code: 1FH, Device Code: 05H - AT49F001A(N), 04H - AT49F001A(N)T.

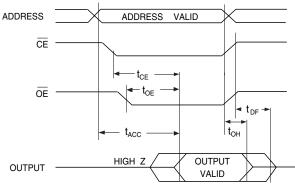
5. See details under Software Product Identification Entry/Exit.

6. This pin is not available on the AT49F001AN(T).

9. DC Characteristics

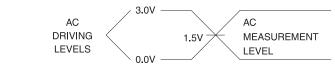
Symbol	Parameter	Condition	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = 0V$ to V_{CC}		10	μA
I _{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}		10	μA
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC} - 0.3V$ to V_{CC}		50	μA
I _{SB2}	V _{CC} Standby Current TTL	\overline{CE} = 2.0V to V _{CC}		1	mA
I _{CC} ⁽¹⁾	V _{CC} Active Current	f = 5 MHz; I _{OUT} = 0 mA		30	mA
V _{IL}	Input Low Voltage			0.8	V
V _{IH}	Input High Voltage		2.0		V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.45	V
V _{OH1}	Output High Voltage	I _{OH} = -400 μA	2.4		V
V _{OH2}	Output High Voltage CMOS	I _{OH} = -100 μA; V _{CC} = 4.5V	4.2		V

Note: 1. In the erase mode, I_{CC} is 70 mA.

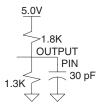


10. AC Read Characteristics

			AT49F001A(N)(T)-45		AT49F001A(N)(T)-55		
Symbol	Parameter	Min	Max	Min	Max	Units	
t _{ACC}	Address to Output Delay		45		55	ns	
t _{CE} ⁽¹⁾	CE to Output Delay		45		55	ns	
t _{OE} ⁽²⁾	OE to Output Delay	0	30	0	30	ns	
t _{DF} ⁽³⁾⁽⁴⁾	\overline{CE} or \overline{OE} to Output Float	0	25	0	25	ns	
t _{OH}	Output Hold from \overline{OE} , \overline{CE} or Address, whichever occurred first	0		0		ns	


11. AC Read Waveforms ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾

- Notes: 1. \overline{CE} may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC} . 2. \overline{OE} may be delayed up to t_{CE} t_{OE} after the falling edge of \overline{CE} without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC} . 3. t_{DF} is specified from \overrightarrow{OE} or \overrightarrow{CE} whichever occurs first (CL = 5 pF).


 - 4. This parameter is characterized and is not 100% tested.

12. Input Test Waveform and Measurement Level

t_R, t_F < 5 ns

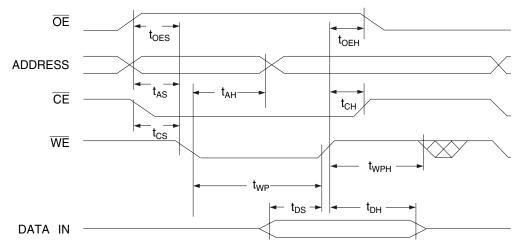
13. Output Load Test

14. Pin Capacitance

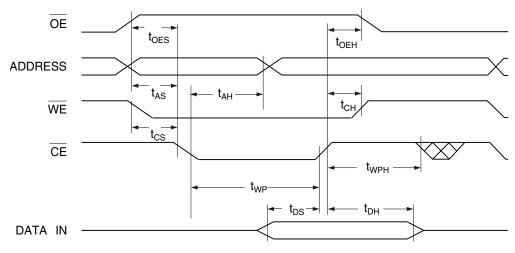
$f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$

Symbol	Тур	Мах	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	$V_{OUT} = 0V$

Note: 1. This parameter is characterized and is not 100% tested.



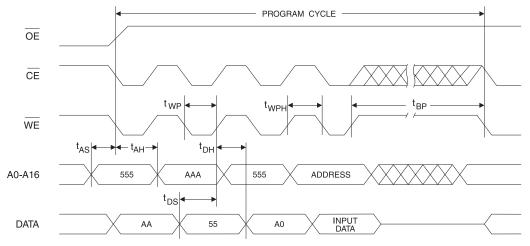
15. AC Byte Load Characteristics


Symbol	Parameter	Min	Мах	Units
t _{AS} , t _{OES}	Address, OE Set-up Time	0		ns
t _{AH}	Address Hold Time	25		ns
t _{cs}	Chip Select Set-up Time	0		ns
t _{CH}	Chip Select Hold Time	0		ns
t _{wP}	Write Pulse Width (\overline{WE} or \overline{CE})	20		ns
t _{DS}	Data Set-up Time	20		ns
t _{DH} , t _{OEH}	Data, OE Hold Time	0		ns
t _{WPH}	Write Pulse Width High	20		ns

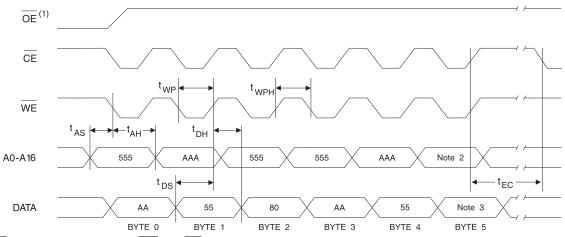
16. AC Byte Load Waveforms

16.1 WE Controlled

16.2 **CE** Controlled



10 AT49F001A(N)(T)

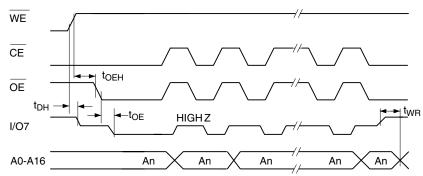

17. Program Cycle Characteristics

Symbol	Parameter	Min	Тур	Max	Units
t _{BP}	Byte Programming Time		30	50	μs
t _{AS}	Address Set-up Time	0			ns
t _{AH}	Address Hold Time	25			ns
t _{DS}	Data Set-up Time	20			ns
t _{DH}	Data Hold Time	0			ns
t _{wP}	Write Pulse Width	20			ns
t _{wPH}	Write Pulse Width High	20			ns
t _{EC}	Erase Cycle Time		3	5	seconds

18. Program Cycle Waveforms

19. Sector or Chip Erase Cycle Waveforms

- Notes: 1. \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.
 - 2. For chip erase, the address should be 555. For sector erase, the address depends on what sector is to be erased. (See note 4 under "Command Definition Table" on page 6.)
 - 3. For chip erase, the data should be 10H, and for sector erase, the data should be 30H.

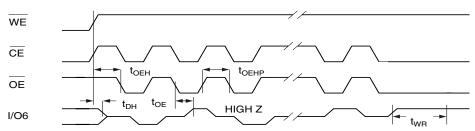

20. Data Polling Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Мах	Units
t _{DH}	Data Hold Time	10			ns
t _{OEH}	OE Hold Time	10			ns
t _{OE}	OE to Output Delay ⁽²⁾				ns
t _{wR}	Write Recovery Time	0			ns

Notes: 1. These parameters are characterized and not 100% tested.

2. See t_{OE} spec in "AC Read Characteristics".

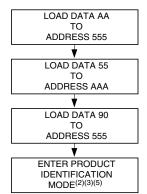
21. Data Polling Waveforms

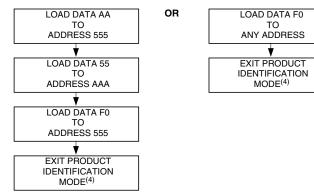

22. Toggle Bit Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Мах	Units
t _{DH}	Data Hold Time	10			ns
t _{OEH}	OE Hold Time	10			ns
t _{OE}	OE to Output Delay ⁽²⁾				ns
t _{OEHP}	OE High Pulse	50			ns
t _{wR}	Write Recovery Time	0			ns

Notes: 1. These parameters are characterized and not 100% tested.

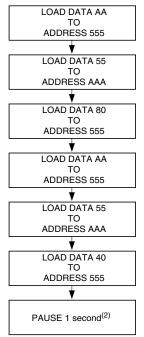
2. See t_{OE} spec in "AC Read Characteristics" .


23. Toggle Bit Waveforms⁽¹⁾⁽²⁾⁽³⁾


- Notes: 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit. The t_{OEHP} specification must be met by the toggling input(s).
 - 2. Beginning and ending state of I/O6 will vary.
 - 3. Any address location may be used but the address should not vary.

12 AT49F001A(N)(T)

24. Software Product Identification Entry⁽¹⁾



25. Software Product Identification Exit⁽¹⁾

- Notes: 1. Data Format: I/O7 I/O0 (Hex); Address Format: A14 - A0 (Hex).
 - 2. A1 A16 = V_{IL} . Manufacture Code is read for A0 = V_{IL} ; Device Code is read for A0 = V_{IH} . Additional Device Code is read for address 0003H
 - 3. The device does not remain in identification mode if powered down.
 - 4. The device returns to standard operation mode.
 - Manufacturer Code: 1FH Device Code: 05H – AT49F001A(N), 04H – AT49F001A(N)T Additional Device Code: 0FH – AT49F001A(N)(T).

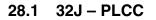
26. Boot Block Lockout Feature Enable Algorithm⁽¹⁾

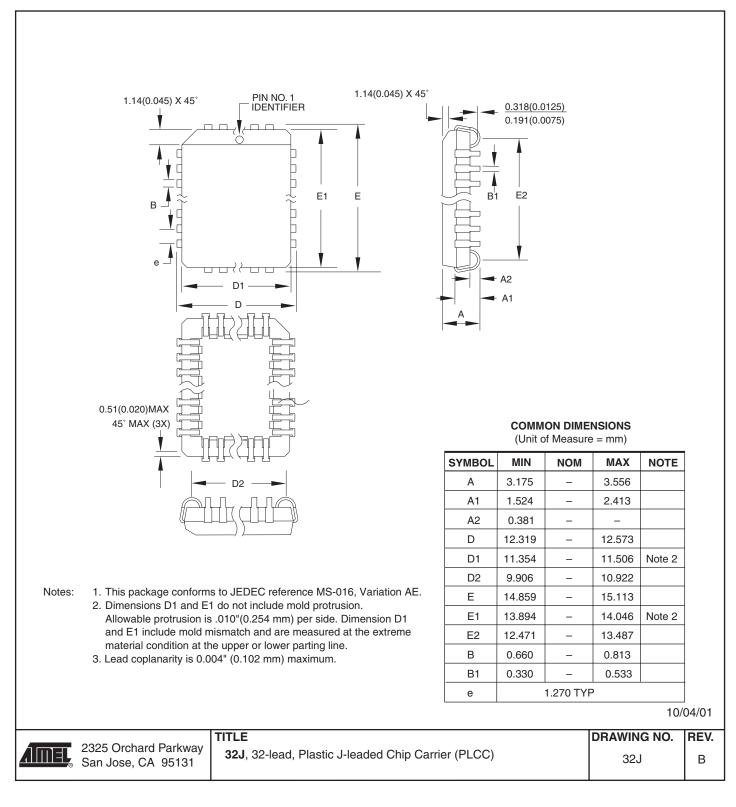
- Notes: 1. Data Format: I/O7 I/O0 (Hex); Address Format: A14 - A0 (Hex).
 - 2. Boot block lockout feature enabled.

27. Ordering Information

27.1 Standard Package

t _{ACC}	I _{CC} (mA)				
(ns)	Active	Standby	Ordering Code	Package	Operation Range
	30	0.05	AT49F001A-45JI AT49F001A-45TI AT49F001A-45VI	32J 32T 32V	Industrial (-40° to 85°C)
			AT49F001AN-45JI AT49F001AN-45TI AT49F001AN-45VI	32J 32T 32V	Industrial (-40° to 85°C)
45			AT49F001AT-45JI AT49F001AT-45TI AT49F001AT-45VI	32J 32T 32V	Industrial (-40° to 85°C)
			AT49F001ANT-45JI AT49F001ANT-45TI AT49F001ANT-45VI	32J 32T 32V	Industrial (-40° to 85°C)
	30	0.05	AT49F001A-55JI AT49F001A-55TI AT49F001A-55VI	32J 32T 32V	Industrial (-40° to 85°C)
			AT49F001AN-55JI AT49F001AN-55TI AT49F001AN-55VI	32J 32T 32V	Industrial (-40° to 85°C)
55			AT49F001AT-55JI AT49F001AT-55TI AT49F001AT-55VI	32J 32T 32V	Industrial (-40° to 85°C)
			AT49F001ANT-55JI AT49F001ANT-55TI AT49F001ANT-55VI	32J 32T 32V	Industrial (-40° to 85°C)

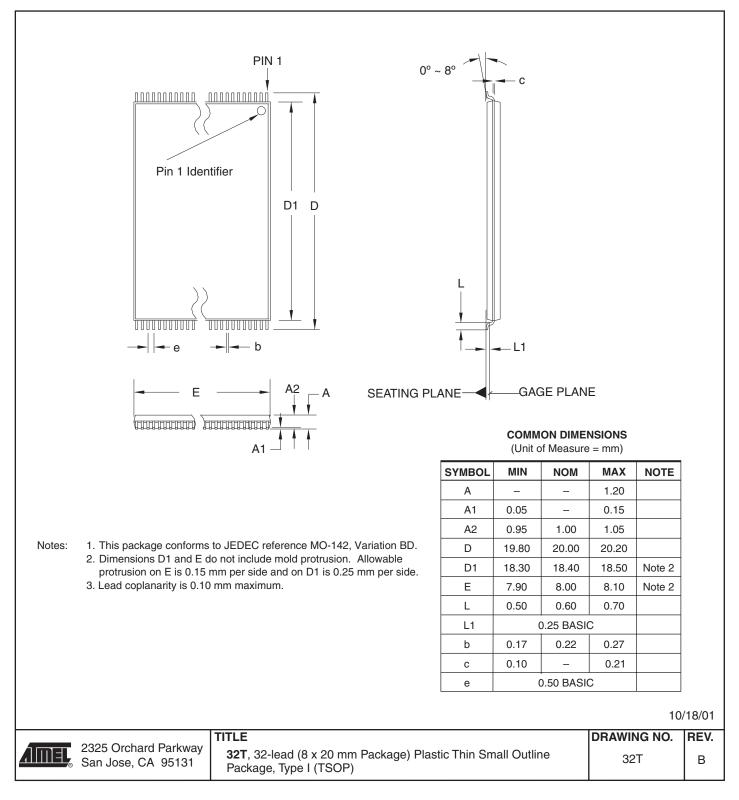

27.2 Green Package Option (Pb/Halide-free)

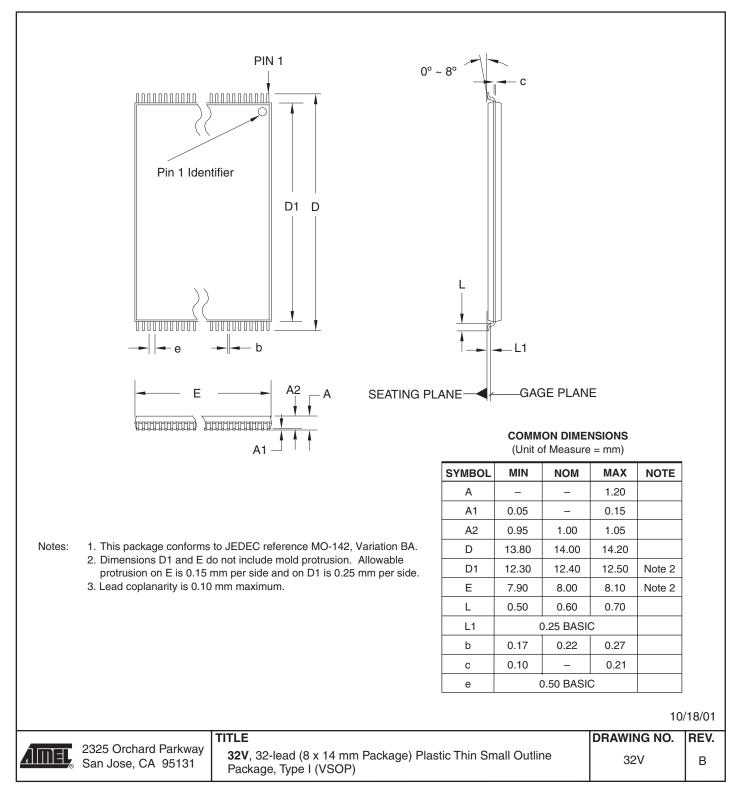

t _{acc} (ns)	I _{CC} (mA)				
	Active	Standby	Ordering Code	Package	Operation Range
	30	0.05	AT49F001AN-55JU	32J	Industrial
			AT49F001AN-55TU	32T	Industrial
55			AT49F001AN-55VU	32V	(-40° to 85°C)
			AT49F001ANT-55JU	32J	la du atria l
			AT49F001ANT-55TU	32T	Industrial
			AT49F001ANT-55VU	32V	(-40° to 85°C)

Package Type				
32J	32-lead, Plastic J-leaded Chip Carrier Package (PLCC)			
32T	32-lead, Plastic Thin Small Outline Package (TSOP) (8 x 20 mm)			
32V	32-lead, Plastic Thin Small Outline Package (VSOP) (8 x 14 mm)			

14 AT49F001A(N)(T)

28. Packaging Information





28.2 32T - TSOP

28.3 32V - VSOP

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®] and others, are registered trademarks, and others are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

